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Mullainathan and Spiess (2017):
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Fragile Families Challenge
Matthew Salganik, Ian Lundberg, Alex Kindel, Sara McLanahan,
and the participants in the Fragile Families Challenge

Funding for FFCWS provided by NICHD (R01HD36916, R01HD39135, R01HD40421) and a consortium of private
foundations, including the Robert Wood Johnson Foundation. Funding for FFC provided by the Russell Sage
Foundation and the Overdeck Fund. FFC Board of Advisors: Jeanne Brooks-Gunn, Kathryn Edin, Barbara
Engelhardt, Irwin Garfinkel, Moritz Hardt, Dean Knox, Nicholas Lemann, Karen Levy, Sara McLanahan, Arvind
Narayanan, Timothy Nelson, Matthew Salganik, and Duncan Watts.
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I Birth cohort panel study

I ≈ 5,000 children born in 20 U.S. cities with an over-sample of
non-marital births

I Followed from birth through age 15

I Already used in hundreds of papers and dozens of dissertations











Outcomes

I Child: GPA (continuous), Grit (continuous)

I Household: Eviction (binary), Material hardship (continuous)

I Primary care giver: Job training (binary), Job loss (binary)



459 researchers applied to participate. Many worked in
interdisciplinary teams. Goal: Make a prediction that minimizes
mean square error on the hold-out set

MSEholdout =

∑
i∈holdout(ŷi − yi )

2

nholdout

More on privacy and ethics audit:
https://arxiv.org/abs/1809.00103
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Using a large, high-quality social science dataset collected since
birth and modern machine learning methods, how accurately can
we predict outcomes from children, parents, and families?
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i∈holdout(ȳtrain − yi )2

Before I show the results, let’s vote . . . .



0.060.19 0.06 0.05 0.030.23
0.00

0.05

0.10

0.15

0.20

Material
Hardship

GPA Grit Eviction Job
Training

Layoff

R2



0.06

0.19

0.06 0.05 0.03

0.23

0.00

0.25

0.50

0.75

1.00

Material
Hardship

GPA Grit Eviction Job
Training

Layoff

R2



Is this even better than a benchmark model?
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What can we learn looking at the all the
predictions?
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How can we learn about important measurement
error and unmeasured variables?

In-depth interviews





What’s next?



Next steps:

I One community paper (including all code and predictions)

I Special issue of Socius
I 12 submitted manuscripts from Challenge participants (all with

accompanying code and computing environment)
I 3 papers from our group

I “Privacy, ethics, and data access: A case study of the Fragile
Families Challenge” by Lundberg, Narayanan, Levy, &
Salganik, https://arxiv.org/abs/1809.00103

I “Improving metadata infrastructure for complex surveys:
Insights from the Fragile Families Challenge” by Kindel,
Catena, Hartshorne, Jaeger, Koffman, McLanahan, Phillips,
Rouhani, Vinh, & Salganik, https://osf.io/93ywg/

I “Successes and struggles with computational reproducibility in
the Fragile Families Challenge” by Liu & Salganik,
https://osf.io/preprints/socarxiv/g3pdb/
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I Read: http://www.bitbybitbook.com

I Teach: http://www.bitbybitbook.com/en/teaching/

(and Italian version coming soon from iI Mulino)

http://www.bitbybitbook.com
http://www.bitbybitbook.com/en/teaching/
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I 6 year gap between end of background data and outcome

I large social disruption—the Great Recession—between end of
background data and outcome

I the sample design of the Fragile Families study

I outcomes measured when child was 15

I outcomes are at a relatively narrow point in time rather than
average over a longer time period (e.g., grades last semester
vs grades in high school)
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I Code from a single Challenge can be repurposed to create
many simulated Challenges

I Data collected with informed consent under well-developed
ethical frameworks

I Likely to spur useful scientific developments
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