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Predicting poverty and wealth from
mobile phone metadata

Joshua Blumenstock,"* Gabriel Cadamuro,? Robert On®


https://doi.org/10.1126/science.aac4420
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Blumenstock et al. (2015), Figure 2
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» 10 times faster
» 50 times cheaper

Blumenstock et al. (2015), Figure 3
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Mullainathan and Spiess (2017):
http://dx.doi.org/10.1257/jep.31.2.87
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Fragile Families Challenge
Matthew Salganik, lan Lundberg, Alex Kindel, Sara McLanahan,
and the participants in the Fragile Families Challenge

Funding for FFCWS provided by NICHD (R01HD36916, RO1IHD39135, R01HD40421) and a consortium of private
foundations, including the Robert Wood Johnson Foundation. Funding for FFC provided by the Russell Sage
Foundation and the Overdeck Fund. FFC Board of Advisors: Jeanne Brooks-Gunn, Kathryn Edin, Barbara
Engelhardt, Irwin Garfinkel, Moritz Hardt, Dean Knox, Nicholas Lemann, Karen Levy, Sara McLanahan, Arvind
Narayanan, Timothy Nelson, Matthew Salganik, and Duncan Watts.
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An overly simple view of stratification research.

/Y:E(Y\><)+eX

Attainment 4 Unpredictable
Predictable component
component

Theories focus on the predictable component, but
empirically the unpredictable component dominates
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» Scientific reasons

» Basic social fact
» Discovery

» Policy reasons
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:Jl: Fragile
Families

& Child Wellbeing Stucly

» Birth cohort panel study

» =~ 5,000 children born in 20 U.S. cities with an over-sample of
non-marital births

» Followed from birth through age 15
» Already used in hundreds of papers and dozens of dissertations
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4,242 families

Birth to age 9
12,942 features

Age 15
1,500 features




4,242 families

Birth to age 9 Age 15
12,942 features 6 outcomes
Training

Background information
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Outcomes
» Child: GPA (continuous), Grit (continuous)
» Household: Eviction (binary), Material hardship (continuous)
» Primary care giver: Job training (binary), Job loss (binary)



459 researchers applied to participate. Many worked in
interdisciplinary teams. Goal: Make a prediction that minimizes
mean square error on the hold-out set
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More on privacy and ethics audit:
https://arxiv.org/abs/1809.00103
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Using a large, high-quality social science dataset collected since
birth and modern machine learning methods, how accurately can
we predict outcomes from children, parents, and families?
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Is this even better than a benchmark model?
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Green line: 4 variable linear regression model



Material hardship

Truth

Benchmark Best submission
| |
I LE ] I - -
- ]aﬂ |-.
1 - 1- -e
.r.“. .r.-: -
b L—
P T, P T
hco *o
*— *
IP - ; l*. i
0 1 0

Prediction



Material hardship GFA Grit
Benchimark | Bast submission Benchmark Best submission Banchmark. Bues] subenission
o —— a = ==
) " o+ —— —t— — ——
v f— [ — - —
' =t —p—; E o
and Ay e miy frem ey £ —
foru] ) oot 5 —ta e = = =
" _— = i —— = - &
—— — Foon repl — 1 sa e
—_— b — v - ke e
_— _— - e ] mn
—_— g - - 1 r— I
0 i0 41 4t
Pradiction Prediction

Prediction




Eviction

Benchmark Best submission

© |

o
o = .
S 3 '
— O
€O
o 2

1 0 1
Density of predicted

probability of event



Job training Layoff

Eviction
Benchmark Best submission Senchmark Bast submission Benchmark | | Best submssion
a WA A JEA A
&gll AN 4|/ i gl /; .
TR . 73] A - . w3l st ,
a 10 1 o 10 1 o 1 9, -5
Density of predictad Density of predicted Dsns'g af predicted
probabiity of event

probabdity of avent prol ity of event




What can we learn looking at the all the
predictions?



Unit

Squared error predicting materialHardship

Challenge Team

Squared error

i
0.4



‘Squared error predicting materialHardship

Squared error predicting grit

Squared error predicting gpa

e
! 03
03
o1
4]
Chlienge Team Chaenge i hilerge Teai
‘Squared error predicting eviction Squared error predicting jobTraining Squared error predicting layoff
Suareen s -
55 o
5 on s 075
H o 5§ o 5 050
025 025 0z
o0 000

hilengs Team




Next questions:

» Is it possible to get better predictive performance for this data
and prediction task?



Next questions:
» Is it possible to get better predictive performance for this data
and prediction task?
> Why is the unpredictability so high even using modern
machine learning methods and what many social scientists
would consider to be large and high-quality data?



Why is the unpredictability so high even using modern machine
learning methods and what many social scientists would consider
to be large and high-quality data?

> Not enough cases



Why is the unpredictability so high even using modern machine
learning methods and what many social scientists would consider
to be large and high-quality data?

> Not enough cases

» Measurement error in existing variables (particularly
outcomes)



Why is the unpredictability so high even using modern machine
learning methods and what many social scientists would consider
to be large and high-quality data?

> Not enough cases

» Measurement error in existing variables (particularly
outcomes)

» Important unmeasured variables



Why is the unpredictability so high even using modern machine
learning methods and what many social scientists would consider
to be large and high-quality data?
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» Measurement error in existing variables (particularly
outcomes)

» Important unmeasured variables



How can we learn about important measurement
error and unmeasured variables?

In-depth interviews
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longitudinal
data collection
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Next steps:

» One community paper (including all code and predictions)
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» Read: http://www.bitbybitbook.com

» Teach: http://www.bitbybitbook.com/en/teaching/
(and Italian version coming soon from il Mulino)


http://www.bitbybitbook.com
http://www.bitbybitbook.com/en/teaching/
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How typical is this result?
> 6 year gap between end of background data and outcome

» large social disruption—the Great Recession—between end of
background data and outcome

» the sample design of the Fragile Families study

v

outcomes measured when child was 15

P> outcomes are at a relatively narrow point in time rather than
average over a longer time period (e.g., grades last semester
vs grades in high school)



What is the ideal C. elegans for social science prediction problems?



What is the ideal C. elegans for social science prediction problems?

Advances in hurricane prediction
Data from the NOA&A Natlonal Hurricane Center (NHC) (13) show that forecast errors for treplcal storms and

husrricanes in the Atlantic basin have fallen rapidly in recent decades, The graph shows the forecast errorin
nautical miles {1 n mi= 1852 km) for a range of fime intervals.
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What is the ideal C. elegans for social science prediction problems?

Advances in hurricane prediction

Data from the NOA&A Natlonal Hurricane Center (NHC) (13) show that forecast errors for treplcal storms and
husrricanes in the Atlantic basin have fallen rapidly in recent decades, The graph shows the forecast errorin
nautical miles {1 n mi= 1852 km) for a range of fime intervals.
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What is the ideal C. elegans for social science prediction problems?

Advances in hurricane prediction

Data from the NOA&A Natlonal Hurricane Center (NHC) (13) show that forecast errors for treplcal storms and
husrricanes in the Atlantic basin have fallen rapidly in recent decades, The graph shows the forecast errorin
nautical miles {1 n mi= 1852 km) for a range of fime intervals.

700 /\ 24 hours

» Can we do this?
» Should we do this?
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A proposal to focus on longitudinal social surveys:

>

| 2
>

Dozens already happening all over the world with interesting
similarities and differences

Already strong community around each survey

Code from a single Challenge can be repurposed to create
many simulated Challenges

Data collected with informed consent under well-developed
ethical frameworks

Likely to spur useful scientific developments
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